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Vectors and Transforms

In
3D Graphics



Change of Lecture Room

e Week 2:
— Wed 2/11: HC1
— Fr1 4/11: HA1

» Thereafter HC1 all times except:
— Week 5: Fri: HC3
— Week 7: Fri: HC3
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CHALMERS Department of Computer Engineering

Tutorials

Course assistants are available.

: * Wednesdays: 17:00 - 19:00
* Will start on Monday * Thursdays: 13:00 - 17:00

» Rooms 4211/13/15/20  * Fridays: 13:00 - 17:00

 Schedule
— Mon to Fri: 17-21
— Thurs + Friday, also: 13-17

* You can do the tutorials at home and just
present here when course assistants are
available.



CHALMERS Department of Computer Engineering

Tutorial Groups

* Work alone or 1n pairs

— In break — 1f you do not already have lab-partner
(or not working alone):

* Sign up list here at desk!




Quick Repetition of Vector Algebra

¢ Scalar and Vector
Quantities. Physical quan-
tities such as temperature, T,
distance, s, density, p, work, W,
etc., that can be fully described
by a single number are called
scalars. Scalars are not associ-
ated with any direction. Physi-
cal quantities that have both
magnitude and direction arc
called vectors, e.g, force, F, ve-
locity, ¥, acceleration, a, mo-
mentum, P, etc.

*Coordinate Systems. A
vector, ¥, can be described in
reference to a coordinate sys-
tem. Two-dimensional coordi-
nate systems can be cartesian or
polar. Three-dimensional coor-
dinate systems can be cartesian,
cylindrical or spherical.

E———— )
DEFINITIONS

{ TWO-
DIMENSIONAL

i Cartesian Coordinates (x.y).
A vector, V. in a 2-D cartesian coordi-
nate system can be written as:

where V,, ¥, are the vector compo-
nents, and £ i, j are the unit vectors
along the x and y axis respectively.
The magnitude of the vector, |V],
 is:

‘ M=y +%;2

« Polar Coordinates (,6).

& Avector, V, in polar coordinates can
~ be written
V=V(1;,0), where:

4 Vo= 12 49,7 md

: v,
=tan—1(-2

i O=tan (Vx)

Relation Between

~ Cartesian and Polar

Coordinates:

V.=|V|cos 0

Vy =|Vlsin0

v=tan”' (4)
2-D Cartesian

Coordinate
System
y

2-D Polar
Coordinate
Systemn

R

e

.

DIMENSIONAL (3-D)
COORDINATE
SYSTEMS:
Cartesian  Coordinates
(x,3,2). A vector, ¥, in a 3-D
cartesian coordinate system can be

written as:

|ﬂ=1{;;?+v.?+v:?

V=V (Ve Vy Vo) =Vyi+Vy j4Vk

3-D
Cartesian
Coordinates

* Cylindrical Coordmates 3
6,2. Avector, ¥, ina co-

VECTOR
ALGEBRA

* Vector Addition. The sum of two
vectors, ¥, and Vg, ina 2-D cartesian
coordinate system is a vector, Vg,
defined as:
L 0
In component notation, the summa-
tion is given as:
Vax =Vax+Vax , Vay=Vyy +Vgy

* Right-hand rule: the direc-
tion of the vector ¢ can be found
by curling the fingers of the right
hand around a hypothetical axis
perpendicular to plane ¥ , - ¥ g so
that the vector ¥, rotates along the
angle o until is aligned with vec-
tor ¥ p. The thumb then gives the
direction of e .

vy, g Nghtl;'uHandzd

Vector Addition

ordinate system can be written

(V,,6, z), where

v=\V2 V2 and 2=z

* Spherical Coordinates (6.¢).
A vector, ¥, ina spherical coordinate sys-

tem is written as:V=V(};,0,9),

where:
V=R 22,

¥
O=tan”'(L)
4

VZ

2242

p=cos-1

* Relation Between Cartesian
and Spherical Coordinates

V,=|Vsingcos 0,
Vy ={ Visingsin@

X=rsingcos v
y=rsin¢sind
2=rcos

Vector Addition:
V ¥Vy=VytV,
* Associative Law of Vector
Addition:

VAVt =V VY )

* Distributive Law for
Multiplication by a Scalar (€):
eV +V p)=eV +eV,
* Scalar or Dot Product:
V=V ¥ gleosa
where @ is the angle between the two

vectors. If the two vectors are perpen-
dicular to each other then:

their components, then in a 3-D
cartesian coordinate system:

ViV =VaxVex +VayVer +VazVi

YV xVp=—VpxV,
A cartesian coordlnale syﬂem called
a right-handed m ifix j = k.
If two vectors are parallel to each then:
;]
V. xVy=0, ¥V, | ¥y

If the vectors are given in terms of

their components, then in a 3-D
cartesian coordinate system:

Vax Var Vaz

Vv, Vector Product
AREA=VAVE sin o0

* Triple Scalar Product

The magnitude of the e scalar
product is equal to the volume of the
parallelepiped formed by the three
vectors ¥y, Vg, Vet Vo(VgxVo).

Triple Scalar Product

Volume =

V5 Vg Vesinacos p

* Vector or Cross Product

VxVy=[Vi| Vel (sina)e
where e is the unit vector perpen-
dicular to the plane formed by
vectors ¥, and ¥V 5.

* Differ ion Formulas
of Vectors

du _dv
—[u(l)*v(l)]——’+—
——[f‘!(’)':(‘——

'[/(’)“(‘)] "*/
[u(l) v(:)]4-—~ -v(t)+u(r)-

. lntegranon of a Vector

mrw [R()]' =R()-R(a)

dt

NS AdOY

NSOV




Reading Instructions

VERY IMPORTANT

« READ HOME PAGE In connection to each lecture
COURSE HOME PAGE is located here:
http://www.cse.chalmers.se/edu/course/TDA361/


http://www.cse.chalmers.se/edu/course/TDA361/
http://www.cse.chalmers.se/edu/course/TDA361/schedule.html

Why transforms?

e \We want to be able to animate objects
and the camera
- Translations
- Rotations
- Shears
— And more...

e \We want to be able to use projection
transforms



How implement transforms?

e Matrices!

e Can you really do everything with a
matrix?

e Not everything, but a lot!
e \We use 3x3 and 4x4 matrices




Transformation

Pipeline
object eye clip normalized window
N device
V
rL || Modelview| |Projection | _|Perspective | Viewport |
fe( Matrix Matrix Division Transform

e other calculations here
— Color / normal per vertex
— polygon culling

— clipping

OpenGL | Geometry stage | done on GPU




-
#
?
:
: . §
:

camera
o

Model space

ModelViewMtx = Model to
View Matrix

View space



The OpenGL Pipeline

-3

B ER N
\ 3 . __; ( )’ d 5 )v'

= PixellOwnership

CSEimitive Dl =lest

- [ASsembly: K;\ - "—,__// g
1 -

T ] s 1 ——

From http://deltronslair.com/glpipe.html



How do | use transtorms
practically?

e Say you have a circle with origin at (0,0,0) and with
radius 1 — unit circle

® Mtx4df m;

@ m.translate(8,0,0);

v_transformed = t*s*v

RenderCircle (m) ;

Mtx4f s, t;
s.scale(2,2,2);
t.translate(3,2,0);

RenderCircle (t*s) ;



Cont’d from previous slide
A simple 2D example

e A circle iIn model space
y

scale(2,2,2);
translate (3,2,0);

translate (8,0,0);

.—x




Cont’d from previous slide
A simple 2D example

e A circle iIn model space
y

| translate(3,2,0);

scale(2,2,2);

(i.e., m=s*t)
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D
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Rotation (2D)

Consider rotation about the origin by 6 degrees
—radius stays the same, angle increases by &

X'=rcos (¢ + 0)

)‘, / y'=rsin (¢ + 0)
bey) X'| [? ?2|X
MM
/ x, y)
9(; \ X =1T1CO0S ¢
ke y =rsin ¢

Answer:| x’=x cos 0 -y sin 0
y’=xsin0O+ycoso



DIEIgNEo)f) Of rotzitiorn rnzirix in 20D
ation is multbyeia]

= r[(cos & +isin a)(cos ¢ +isin g)] =

= r(cos a cos ¢ —sin a:sin @) + “
Ir (COS ' Sin ¢ + SIn ¢ COS @) @-p

p=(p..P,) =(rcosg,rsing)’
n=(n,,n,)" =(r(cosacosg—sinasing),

r(cos a sin ¢ +sin ¢ cos ¢))"



DerivationZBNoIationNConLe

(FEE8% MFsin o))"

n=(n,n,)" =(r(fosalosgH{sinafsin 4),
r(sin o £os ¢ +{cos afsin ¢))’

n=Rp whatisR,?

N _ —(px
n, ) -,
R

VA

Tomas Akenine-Moéller © 2002



Rotationsingsiy

lons, but with a

3X3 matrix
(cosa -sina 0)

cosa -Sina _
R,(a)=| . = R,(a)=|sina cosa O
sinad  COS«
. 0 0 1)

(1 0 0 )
=0 coSsa -SIha

For X R (@)

\0 Sinax cosa )
( in )

FOF Y cosa 0 siha
R (a)=] O 1 0

(—Sina 0 cosa
Tomas Akenine-Moéller © 2002




Translations must be simple?

Translation Rotation
? 0?7 7

7 7?2 ?2Pp=p+t n=Rp
7?7 7

e Rotation Is matrix mult, translation i1s add

e \Would be nice if we could only use matrix
multiplications...

e Turn to homogeneous coordinates
e Add a new component to each vector



Homogeneous notation

e A point: pz(pX p, P, 1)T
e Translation becomes:

e Translation of vector: g
e Also allows for projections (later)



Rotations 1N 4x4 form

e Just add a row at the bottom, and a
column at the right:

cosa -—SIina
SINn  COS«
0 0
0 0

v,xv, Vector Product
AREA=VAVE sin 0.

R, (a) =

* Triple Scalar Product

The magnitude of the triple scalar
product 1s equal to the volume of the
parallelepiped formed by the three

vectors Vo, Vg Vi Vo(VgxVe).

e Similarly for X and Y
e det( R )=1 (for 3x3 matrices)

e Trace( R )=1+2cos(alpha) (for any
axis,3x3)




Change of Frames

model-to-world:

e M P=(0,5,0,1) o

a, b, c o T0] .~
rld space
M — ay Dy Cy Oy 5
model-to-world ~
az Dz Cz 0 Z O (Both coordinate systems are right-handed)
0 0 0 1]lLL

E-g-: Pworld = I\/Im—>w Prmodel = Ivlm—>w (O’S’O)T =5b (+ O)



More basic transforms

e Scaling ’ =

e Shear [ — A

e Rigid-body: rotation then translation

e Concatenation of matrices

e Not commutative, i.e., IREBE N 5

e In , the rotation is done first

e Inverses and rotation about arbitrary axis:
e Rigid body: X1 =XT



Normal transforms
Not so normal...

S

e Cannot use same matrix to transform normals

Use:N = (M‘l)T Instead of M

e M works for rotations and translations, though



The Euler Transtorm

e Assume the view looks down
the negative z-axis, with up In
the y-direction, x to the right

E(h, p,r) = R, (NR (PR, ()]

e h=head We should apply the
e p=pitch rotation transforms to the
e r=roll rotation axes as well

e Gimbal lock can occur — looses one degree of
freedom

e Example: h=0,p=n/2, then the z-rotation is the
same as doing a previous rot around y-axis



Quaternions
d=(d,,9,) =0, 9y,9,,q)

=19, + Ja, +ka, +q,
e Extension of imaginary numbers

e Avoids gimbal lock that the Euler could
produce

e Focus on unit quaternions:
n(@)=ay +q, +d; +q, =1

e A unit guaternion Is:
q=(singu,,cos¢g) where|u,|=1




Unit quaternions are perfect for
rotations! g = (sin ¢uq,cos ?)

e Compact (4 components)

e Can show that

e ...represents a rotation of
2¢ radians around uq of p

e That Is: a unit quaternion represent a
rotation as a rotation axis and an angle

®@ rotate (ux,uy,uz,angle);

e Interpolation from one gquaternion to another is
much simpler, and gives optimal results



Projections
e Orthogonal (parallel) and Perspective




Ny
Orthogonal projection

e Simple, just skip one coordinate
- Say, we're looking along the z-axis
- Then drop z, and render




’t)‘
Orthogonal projection

e Not invertible! (determinant is zero)
e For Z-buffering

— It I1s not sufficient to project to a plane
- Rather, we need to "project” to a box

far
ﬁ
image plane Y near

/
eye

e Unit cube Is also used for perspective proj.
e Simplifies clipping

Unit cube: [-1,-1,-1] to [1,1,1]



Ny
Orthogonal projection

e The "unitcube projection” is invertible

e Simple to derive
— Just a translation and scale




What about theose homogeNENOUS
coordinates?

o=(p, p, P, pJ

e p.=0 for vectors, and p»=1 for points
e What if pwis not 1 or 0?
e Solution Is to divide all components by pw

p=(p,/p, B,/Ps P /Py 1f
e Gives a point again!

e Can be used for projections, as we will
see






e The "arrow’” is the
homogenization
process




Perspective projection

e Again, the determinant is O (not invertible)

e To make the rest of the pipeline the same
as for orhogonal projection:
— project into unit-cube

e Not much different from P,
e Do not collapse z-coord to a plane



Understanding the projection matrix

_(dlpx/ pz)+a'
| —(dyp, /p,)+D

1

e Scaling
e Skew
e Keep z-Iinfo



Perspective projection matrices

e See "Fran Varld till Skarm” secion 4 for
more detalls.

e BREAK...



Quick Repetition of Vector Algebra

Length of vector: x| =+/(x? +y? +2?)

X

X
Jxe+y?+22) X
Normal: n= (V1 _Vo)x (Vz _Vo)
(usualy needs to be normalized as well)

i j k
VXVe=iVix Vay Vaz
Vex Vey Viz

v.«v, Vector Product
: AREA=VAVE sin 0.

Normalizing a vector: x =

Cross Product:

* Triple Scalar Product

° PerpendiCUIar VECtor, Area The magnitude of the triple scalar
. . X\ product is equal to the volume of the
e SIN O SIng =2 b parallelepiped formed by the three
A\ vectors V., Vg, Vet Vo (VpxVo).
UxV= X fuy v =1 v, Vb § (s v = 1y vo) + B (14 vy = 14y v, ) 'I\:ri%a Scalar Product
VexVe
V, eV, P

Dot product: cosa =

vl /
v,ev, =(ab, +ab, +a,b,) 2

Volume =Y, Vg Vesinocos B




Ray/Plane Intersections

« Ray: r(t)=o+td

n
Plane: nex + d = 0; d=-nep, po.//

 Set x=r(t):
ne(o+td) —d =0
Neo+t(ned) —d =0
t = (d —ne0) / (ned)

o

0]

Vec3f rayPlanelntersect(vec3f o,dir, n, d)

{
float t=(d-n.dot(0)) / (n.dot(dir));
return o + d*t;

UIf Assarsson © 2011



Ray/Plane Intersections

- Ray: r(t)=o+td / )
po/

Plane: nex + d = 0; d=-nep,

o Set x=r(t): /
ne(o+td) —-d =0 0
Neo+t(ned) —d =0
t = (d —ne0) / (ned)

Note: for t to be the distance expressed in the
used unit, d must be of unit length. UIf Assarsson © 2011



Line/Line intersection in 2D

®r,(s)=o0,+sd, ><

r,(t) = o,+td
‘2() 2 2 \/

® r,(s) =ry(Y) (1)
® 0,+sd,= 0,+td,(2)

noting that ded"=0, [d=(a,b) — d =(b,-a)]

Sd1'd2l: (0,-04) * dzJ_ —

td,ed, ™= (0,-0,) * dy




Line/Line intersection in 3D
® r,(s)=o,+sd
® ri(t) :OZ+td21 ><

o 1,(S)=r,(t) (1) \/

e 0,+sd;= 0,+td, (2)

noting that d x d=0 |(d, xd,)|" = 0 means parallel lines

sd, x d, = (0,-01) X d s, t correspond to closest
td2X dl = (01'02) X dl points

s (d;x dy)e(dyx dy)=((0,-0,) x d;)*(d;xdy)
t (dyxdy)e(dy;xdy)=((0,-0,) xdy)e(dyxdy)

S— det(0, —0,,d,,d, xd,) t— det(0, —0,,d;,d,; xd,)

H(dl Xdz)H2 H(dl ><d2)H2



Vs P
Area and Perimeter DOV

\Z

For polygon pg, p;---Ps g

Perimeter = omkrets = sum of length of each
edge in 2D and 3D:

n-1 n
O :Z:():H Piva— pi” :Z

!
1=0

We can understand the formula from using Greens theorem: integrating over
border to get area 1
Choose arbitrary point to integrate from, e.g. Origin (0,0,0) Avriangle = 2 (V1 X Vz)

Works for non-convex polygons as well






Volume in 3D

The same trick for computing area in 2D can be A\
used to easily compute the volume in 3D for ﬂ’
triangulated objects
Again, choose arbitrary point-of-integration, e.g. Origin (0,0,0) n
With respect to point-of-integration q’

«  For all backfacing triangles, add volume

«  For all frontfacing triangles, subtract volume

Works for non-convex polygons as well where
1 1 a = p,-origin
tetrahedrm — _I ‘a ¢ (b X C] — _I ‘det(a’ b; C)‘ b = p,-origin
3! 3! C = pg-origin

The sign of the determinant will
automatically handle positive and
negative contribution




Scan Conversion of Line
Segments

o Start with line segment in window
coordinates with integer values for
endpoints

* Assume implementation has a

write pixel function ‘Xz'y}’..
y=kx+m \\\ﬂ//’
A R
k — _y //
AX Sranl 1
“«—AX ——»




DDA Algorithm /

/

/

- Digital Differential Analyzer i

- AX

—DDA was a mechanical device for numerical
solution of differential equations

—Line y=kx+ m satisfies differential equation
dy/dx = K = AY/AX = Y,-y1/X5-X;
* Along scan line Ax =1

y=yl;

For (x=x1; x<=x2,1ix++) {
write pixel (x, round(y), line color)
vt=k;

}




Problem

* DDA = for each x plot pixel at closest y

—Problems for steep lines
/

/

/
l




Using Symmetry

eUseforl>k=>0

Fork > 1, swap role of xand y
—For each vy, plot closest x

/

/
I




* The problem with DDA is that it uses floats
which was slow In the old days

* Bresenhams algorithm only uses integers



Bresenham’s line drawing

algorithm
The line is drawn between two points (X, Y,)
and (X, y;)
Slope Kk = (Y1 = ¥o) (y = kx + m)
(Xl o Xo)

Each time we step 1 in x-direction, we should increment y with k.
Otherwise the error in y increases with k.

If the error surpasses 0.5, the line has become closer to the next y-
value, so we add 1 to y simultaneously decreasing the error by 1
function line(x0, x1, y0, y1)

int deltax := abs(x1 - x0)
int deltay := abs(y1 - y0)

real error := 0
real deltaerr := deltay / deltax Seealso L . .
inty := y0 http://en.wikipedia.org/wiki/Bresenham's_line_algorithm

for x from x0 to x1
plot(x,y)
error := error + deltaerr
if error > 0.5
y=y+1
error :=error - 1.0 UIf Assarsson © 2006


http://en.wikipedia.org/wiki/Image:Bresenham.png

Bresenham’s line drawing
algorithm

* Now, convert algorithm to only using integer computations

« The trick we use is to multiply the fractional numbers above by (X;-
X,), Which enables us to express them as integers.

« The only problem remaining is the constant 0.5—to deal with this,
we multiply both sides of the inequality by 2

Old float version: New integer version:
function line(x0, x1, y0, y1) function line(x0, x1, y0, y1)
int deltax := abs(x1 - x0) int deltax := abs(x1 - x0)
int deltay := abs(y1 - y0) int deltay := abs(y1 - y0)
real error ;=0 real error := 0
real deltaerr := deltay / deltax real deltaerr := deltay
inty:=y0 inty :=y0
for x from x0 to x1 for x from x0 to x1
plot(x,y) plot(x,y)
error := error + deltaerr error := error + deltaerr
if error > 0.5 if 2*error > deltax
y=y+1 y=y+1
error :=error - 1.0 error := error - deltax

UIf Assarsson © 2006


http://en.wikipedia.org/wiki/Image:Bresenham.png

Complete Bresenham’s line
drawing algorithm

function line(x0, x1, y0, y1)

boolean steep := abs(yl - yO) > abs(xl - XO) The first case is allowing us to draw
. lines that still slope downwards, but
If steep then . - S
head in the opposite direction. l.e.,
swap(x0, y0) swapping the initial points if x0 >

swap(x1, y1) x1.
if xO > x1 then To draw lines that go up, we check if yO
>=vy1; if so, we step y by -1 instead
swap(x0, x1) / L e e SERY Y
swap(y0, yl) <— To be able to draw lines with a slope
int deltax := x1 - x0 less than one, we take advantage

of the fact that a steep line can be
reflected across the line y=x to

int deltay := abs(y1 - y0)

int error := 0 obtain a line with a small slope. The
int ystep effect is to switch the x and y
inty :=y0 variables.
iIf yO <yl then ystep := 1 else ystep :=-1
for x from x0 to x1
If steep then plot(y,x) else plot(x,y) ><
error ;= error + deltay

if 2xerror > deltax

y =y tystep
error ;= error - deltax UIf Assarsson © 2006




You need to know

— How to create a simple Scaling matrix, rotation matrix,
translation matrix and orthogonal projection matrix

— Change of frames (creating model-to-view matrix)
— Understand how quaternions are used

— Understanding of Euler transforms + gimbal lock
— DDA line drawing algorithm

— Understand what is good with Bresenhams line
drawing algorithm

— How to do line/line intersection test



The following slides are simply extra non-
compulsory material that explains the content of the
lecture in a different way.

Most of the following slides are
from
Ed Angel

Professor of Computer Science,
Electrical and Computer Engineering,
and Media Arts

University of New Mexico



Scalars

 Need three basic elements in geometry
—Scalars, Vectors, Points

« Scalars can be defined as members of sets which
can be combined by two operations (addition and
multiplication) obeying some fundamental axioms
(associativity, commutivity, inverses)

« Examples include the real and complex number
systems under the ordinary rules with which we are
familiar

» Scalars alone have no geometric properties



Vector Operations

 Physical definition: a vector is a quantity with two attributes
— Direction
— Magnitude
« Examples include
— Force
— Velocity
— Directed line segments
» Most important example for graphics
« Can map to other types. Every vector can be multiplied by a scalar.

 There Is a zero vector
—Zero magnitude, undefined orientation
» The sum of any two vectors Is a vector

YA



Vectors Lack Position

» These vectors are identical
—Same length and magnitude

e

v

* \VVectors insufficient for geometry
—Need points



Points

» |_ocation In space

» Operations allowed between points and
Vectors
—Point-point subtraction yields a vector
—Equivalent to point-vector addition

3 v=P-Q

P=v+Q



Affine Spaces

 Point + a vector space

» Operations
—\Vector-vector addition
—Scalar-vector multiplication
—Point-vector addition
—Scalar-scalar operations

* For any point define
~1«P=P
—0 « P =0 (zero vector)



| Ines

 Consider all points of the form
—P(a)=P, + o d
—Set of all points that pass through P, in the
direction of the vector d

Pl



Parametric Form

 This form iIs known as the parametric form
of the line

—More robust and general than other forms
—Extends to curves and surfaces

* Two-dimensional forms
—Explicit: y = kx + m
—Implicit: ax + by +c =0
—Parametric:

X(a) = axy + (1-a)X,
y(or) = ay, + (1-a)y;



Rays and Line Segments

*If o >= 0, then P(a) Is the ray leaving P, In
the direction d

If we use two points to define v, then

P(a) = Q + o (R-Q)=Q+av e
=aR + (1-a)Q R

—or O<=a<=1 we get all the
noints on the line segment
joining R and Q Aa




Planes

* A plane can be defined by a point and two

vectors or by three points 5

R U R

P(a,B)=R+au+pv P(a.,B)=R+a(Q-R)+B(P-Q)



Triangles
¢

b \\ convex sum of S(a) and R

s h
// A
convexsumofPandQ - /

/’,, T(O«’,/B ) \\
7 \

P Slo) Q

for O<=a,3<=1, we get all points in triangle



Normals

 Every plane has a vector n normal (perpendicular,
orthogonal) to it

 From point/vector form
— P(o,B)=R+oau+pv
we know we can use the cross product to find
—N=U XV
» Plane equation:
—n-x—-d=0,
—where d =-n -p and p Is any point in the plane

- 5

Vv




Normal for Triangle

n
plane n-(p-py,)=0 P2

N =(P,-Pg) *(P1- Po)

normalize n « n/|n| Po 1

Note that right-hand rule determines outward face



Convexity

* An object Is convex Iff for any two points In
the object all points on the line segment
between these points are also in the object

not convex

convex



Affine Sums

e Consider the “sum”

P=o,P;+o,P,*.....+0 P,

Can show by induction that this sum makes
sense Iff

o ta,t.. .. o=l

In which case we have the affine sum of the
points P,,P,,.....P,

* If, In addition, a;>=0, we have the convex
hull of P.,P,,.....P,



Convex Hull
Consider the linear combination
P=o,P;+0,P,*.....+a P,
o If a+o,t.....0,=1
— (in which case we have the affine sum of the points P,,P,,.....P,)
and If o,>=0, we have the convex hull of P,P,,.....P,

« Smallest convex object
containing P,,P,,.....P,




Frames

* A coordinate system is insufficient to
represent points

* |f we work in an affine space we can add a
single point, the origin, to the basis vectors
to form a frame




Representing one basis in terms
of another

Each of the basis vectors, ul,u2, u3, are vectors that

can be represented in terms ., "
b

Uy = Y1aVaty12Vot713Vs / 2
Uy = Yo VYoo VotYosVs

— i |
U3 = V31V 1TY3oVotY33V3




Matrix Form

The coefficients define a 3 x 3 matrix

_V11 Y12 Y13_
M= |71 Yo V23
Y31 V3o Vs

and the bases can be related by

a=MTb



Translation

* Move (translate, dlsplaceI) a point to a new
location

* Displacement determined by a vector d

—Three degrees of freedom
—P’=P+d



How many ways?

Although we can move a point to a new location In
Infinite ways, when we move many points there Is
usually only one way

translation: every point displaced
by same vector



Translation Using
Representations

Using the homogeneous coordinate
representation in some frame

=[xy z1]T
O’:[X’ ya Za I]T
d=[dx dy dz 0]"

Hencep’=p+do note that this expression is in
four dimensions and expresses

)
X' =xtdy point = vector + point

y'=y+d,,
z’=z+d,



Translation Matrix

We can also express translation using a
4 x 4 matrix T in homogeneous coordinates

p’=Tp where 1 0 0 d,
0 1 0 q,
0 0 1 d,
T=T@ 0, 0= g o o 1

This form is better for implementation because all affine
transformations can be expressed this way and multiple
transformations can be concatenated together



Homogeneous Coordinates

The homogeneous coordinates form for a three dimensional
point [X y z] Is given as

P=[xX"y 2’ W] T =[wx wy wz W] I

We return to a three dimensional point (for w=0) by
X<—x’Iw

Yy’ /w

2<7’/w

If w=0, the representation is that of a vector

Note that homogeneous coordinates replaces points in three
dimensions by lines through the origin in four dimensions

For w=1, the representation of a point is [Xy z 1]



Homogeneous Coordinates
and Computer Graphics

* Homogeneous coordinates are key to all
computer graphics systems

—All standard transformations (rotation,
translation, scaling) can be implemented with
matrix multiplications using 4 x 4 matrices

—Hardware pipeline works with 4 dimensional
representations

—For orthographic viewing, we can maintain w=0
for vectors and w=1 for points

—For perspective we need a perspective division



Rotation about the z axis

e Rotation about z axis In three dimensions leaves all
points with the same z

—Equivalent to rotation in two dimensions in
planes of constant z

X’=x cos 0 -y sin 0
y’=xsmn0+Yycoso
7z =z

—0or In homogeneous coordinates
p’=R,(0)p



Rotation Matrix

R=R,(0) =

c0sO —sin®
sin6 cos©
0 0
0 0

o rr O O

L O O O




Rotation about X and y axes

« Same argument as for rotation about z axis
—For rotation about x axis, x I1s unchanged
—For rotation about y axis, y Is unchanged

1 0 0 0]

0 cosO® -sin® O
R=Ry(0)= 10 sine coso 0
0 O 0 1

(cos® 0 sind 0
R = Ry(@) — 0 1 0 0
-sin®@ 0 cosO O
0 0 0 1




Scaling

Expand or contract along each axis (fixed point of origin)

X’ =8, X
Y =syX
Z’=8,X
p’=Sp
s, 0 0
0 s, O
S=5(s,, Sy, S,) =
(Sx: Sy» S7) 0 0 s
0 0 0 1




Reflection

corresponds to negative scale factors

y
A
Sy =-1s,=1 zh‘ o fl-—i; original

<
I
57
wm
X
I
H
w
<
[
1
H

s, =-1s,=-1




Inverses

» Although we could compute inverse matrices by
general formulas, we can use simple geometric
observations

~Translation: T-(d,, d,, d,) = T(-d,, -d,, -d,)
—Rotation: R "1(0) = R(-0)
» Holds for any rotation matrix

» Note that since cos(-0) = cos(0) and sin(-
0)=-sin(0)
R 1(0) =R T(8)
—Scaling: S(s,, s, s,) = S(1/s,, 1/s,, 1/s,)



Concatenation

« We can form arbitrary affine transformation
matrices by multiplying together rotation,
translation, and scaling matrices

 Because the same transformation is applied to
many vertices, the cost of forming a matrix
M=ABCD is not significant compared to the cost
of computing Mp for many vertices p

* The difficult part is how to form a desired
transformation from the specifications in the
application



Order of Transformations

» Note that matrix on the right is the first
applied
» Mathematically, the following are equivalent
p’=ABCp = A(B(Cp))
* Note many references use column matrices

to represent points. In terms of column
matrices

p’T — pTCTBTAT



General Rotation About the
Origin

A rotation by 6 about an arbitrary axis
can be decomposed into the concatenation
of rotations about the X, y, and z axes

R(6) = R,(6,) R(8y) R,(6,)

0, 0, 0,are called the Euler angles 0

Note that rotations do not commute

We can use rotations in another order but

with different angles ,



Rotation About a Fixed Point
other than the Origin

Move fixed point to origin
Rotate
Move fixed point back

M = T(pg) R(0) T(-py)

Y . Y
A
-’ °
fpf
— — —_—
ﬁ— X

-~




Instancing

* In modeling, we often start with a simple
object centered at the origin, oriented with
the axis, and at a standard size

*\We apply an instance transformation to Its
vertices to T T
Scale — —’T— ‘ —
Orient — n
T

Locate r ,



Shear

« Helpful to add one more basic transformation
 Equivalent to pulling faces in opposite directions

| |
oy F




Shear Matrix

Consider simple shear along x axis

y
A

(x', v')
e

I ,/

: &7

1 L

I ,/

L \9

I

. X

X’=x+ycot0 5, 7]
y =Yy t
z7z’=7z

1 cot6 O O]
He)=|0 1 00

O O 1 O

0 0 01




OpenGL Transformations



Objectives

*|_earn how to carry out transformations in
OpenGL

—Rotation
—Translation
—Scaling
* Introduce OpenGL matrix modes
—Model-view
—Projection



Clarification (by UIf)

 Note that the following slides explain the old
deprecated (before OpenGL 3.0) way to modify
the modelview matrix and projection matrix in
OpenGL. These were fixed function built in
OpenGL-matrices. Today, we instead send the
modelview and projection matrix ourselves to the
vertex shader. But the principles of the following
slides still apply. We just have to create and send
the matrices to the shaders manually instead of
having them built in.




OpenGL Matrices

*In OpenGL matrices are part of the state

« Multiple types
—Model-View (GL._MODELVIEW)
—Projection (GL_ PROJECTION)
—Texture (GL_TEXTURE) (ignore for now)
—Color(GL_COLOR) (ignore for now)

» Single set of functions for manipulation

» Select which to manipulated by
-glMatrixMode (GL MODELVIEW) ;
—glMatrixMode (GL PROJECTION) ;



Current Transformation Matrix
(CTM)

 Conceptually there is a 4 x 4 homogeneous
coordinate matrix, the current transformation
matrix (CTM) that is part of the state and is applied
to all vertices that pass down the pipeline

* The CTM is defined in the user program and loaded
Into a transformation unit
C

D l p’=Cp

vertices > CTM > vertices




CTM operations

* The CTM can be altered either by loading a new
CTM or by postmutiplication

Load an identity matrix: C « |
Load an arbitrary matrix: C < M

Load a translation matrix;: C < T
Load a rotation matrix;: C «— R
Load a scaling matrix: C «<— S

Postmultiply by an arbitrary matrix: C <« CM
Postmultiply by a translation matrix: C < CT
Postmultiply by a rotation matrix: C < C R
Postmultiply by a scaling matrix: C «<— C S



Rotation about a Fixed Point

Start with identity matrix: C « |
Move fixed point to origin: C « CT
Rotate: C < CR

Move fixed point back: C <~ CT !

Result: C = TR T -1 which is backwards.

This result is a consequence of doing postmultiplications.
Let’s try again.



Reversing the Order

WewantC=T1RT
so we must do the operations in the following order

C<« 1

C«CT1
C«CR
C«CT

Each operation corresponds to one function call in the
program.

Note that the last operation specified is the first executed In
the program



CTM in OpenGL

* OpenGL has a model-view and a projection
matrix in the pipeline which are
concatenated together to form the CTM

« Can manipulate each by first setting the
correct matrix mode

Vertices . Vertices
- Model-view ——m» Projection o

| |
|
CTM




Rotation, Translation,
Scaling

Load an identity matrix:

glLoadIdentity ()
Multiply on right:

glRotatef (theta, vx, vy, vz)
theta in degrees, (vx, vy, wvz) define axis of rotation

glTranslatef (dx, dy, dz)
glScalef( sx, sy, sz)
Each has a float (f) and double (d) format (glScaled)



Example

» Rotation about z axis by 30 degrees with a fixed
point of (1.0, 2.0, 3.0)

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;

glTranslatef (1.0, 2.0, 3.0);
glRotatef (30.0, 0.0, 0.0, 1.0);
glTranslatef(-1.0, -2.0, -3.0);

« Remember that last matrix specified in the program
IS the first applied



Arbitrary Matrices

 Can load and multiply by matrices defined in
the application program

glLoadMatrixf (m)
glMultMatrixf (m)

* The matrix m IS a one dimension array of 16
elements which are the components of the
desired 4 x 4 matrix stored by columns

*INn glMultMatrix£f, m multiplies the existing
matrix on the right




Matrix Stacks

* [N many situations we want to save
transformation matrices for use later
—Traversing hierarchical data structures (Chapter 10)
—Avoiding state changes when executing display lists

» OpenGL maintains stacks for each type of
matrix

—Access present type (as set by glMatrixMode) by
glPushMatrix ()
glPopMatrix ()



Reading Back Matrices

» Can also access matrices (and other parts of the
state) by query functions

glGetIntegerv
glGetFloatv
glGetBooleanv
glGetDoublev
glIsEnabled

* FOor matrices, we use as

double m[16];
glGetFloatv (GL MODELVIEW, m) ;



Using the Model-view
Matrix

* In OpenGL the model-view matrix is used to
—Position the camera

 Can be done by rotations and translations but
IS often easier to Use gluLookAt

—Build models of objects

* The projection matrix is used to define the view
volume and to select a camera lens



Quaternions

 Extension of imaginary numbers from two to three
dimensions

* Requires one real and three imaginary components
L, K g=qy+a,i+a,j+ask

 Quaternions can express rotations on sphere
smoothly and efficiently. Process:
—Model-view matrix — quaternion
—Carry out operations with quaternions
—Quaternion — Model-view matrix



Computer Viewing

Ed Angel

Professor of Computer Science,
Electrical and Computer Engineering,
and Media Arts

University of New Mexico



Objectives

* Introduce the mathematics of projection
* Introduce OpenGL viewing functions
* ook at alternate viewing APIs



Computer Viewing

 There are three aspects of the viewing
process, all of which are implemented in the
pipeline,
—Positioning the camera
e Setting the model-view matrix
—Selecting a lens
» Setting the projection matrix
—Clipping
« Setting the view volume
* (default is unit cube, R3, [-1,1])



Default Projection

Default projection is orthogonal

clipped out
/

v

1
Jeedee e X

| Projection plane  z=0




Moving the Camera Frame

* |f we want to visualize object with both positive and
negative z values we can either

—Move the camera In the positive z direction
» Translate the camera frame
—Move the objects in the negative z direction
* Translate the world frame
« Both of these views are equivalent and are
determined by the model-view matrix

—Want a translation (g1Translatef (0.0,0.0,-d) ;)
-d > 0



Moving the Camera

*\We can move the camera to any desired
position by a sequence of rotations and
translations

« Example: side view
—Rotate the camera
—Move It away from origin .

—Model-view matrix C = TR i/
R

Z

y
A




OpenGL code

* Remember that last transformation specified
IS first to be applied

glMatrixMode (GL_MODELVIEW)
glLoadIdentity() ;
glTranslatef (0.0

, 0.0, -d);
glRotatef (90.0, 0.0

, 1.0, 0.0);



The LookAt Function

» The GLU library contains the function gluLookAt to
form the required modelview matrix through a
simple interface

 Note the need for setting an up direction
« Still need to Initialize
—Can concatenate with modeling transformations

« Example: iIsometric view of cube aligned with axes

glMatrixMode (GL MODELVIEW) :
glLoadIdentity() ;
gluLookAt(1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0., 1.0. 0.0);



gluLookAt

glLookAt (eyex, eyey, eyez, atx, aty, atz, upx,
upy, upz) Y
(ot , at , ot ) A
X Y z

\

(up,: Up,, UP,) o Zres

||\4Li
Z

(eye , eye, , eye )

i oty




Other Viewing APIs

* The LookAt function is only one possible
API for positioning the camera

e Others include

—View reference point, view plane normal, view
up (PHIGS, GKS-3D)

—Yaw, pitch, roll
—Elevation, azimuth, twist
—Direction angles



OpenGL Orthogonal Viewing

glOrtho (left,right,bottom, top,near, far)

¥ [nigﬁ-h h:"F-' 'Fﬂr]
P
_ ol =-FI]F

F = Wiew 'l.-'-::|l_lma

Z =ear

A

.I' -
[ia-#, En:.ll‘h:.!m, -near)

near and far measured from camera



OpenGL Perspective

glFrustum(left,right,bottom, top,near, far

) /’II:—Fur
ZF=T1aar

"

[rrgﬁf; fop,-near




Using Field of View

* With g1lFrustum It IS often difficult to get the
desired view

*gluPerpective (fovy, aspect, near,
far) often provides a better interface

X , — front plane

aspect = w/h

fov




Projections explained differently

 Read the following slides about orthogonal
and perspective projections by your selves

* They present the same thing, but explained
differently



Projections and Normalization

 The default projection in the eye (camera) frame
IS orthogonal
* For points within the default view volume
Xp =X
Yo=Y
z,=0
» Most graphics systems use view normalization

—All other views are converted to the default view by
transformations that determine the projection matrix

—Allows use of the same pipeline for all views



Homogeneous Coordinate
Representation

default orthographic projection

P,=Mp

X
<

<
©

= N
©

— O X
<
[

|

o O O Bk
o O — O

In practice, we can let M = | and set

the z term to zero later

o O O O

— O O O




Simple Perspective

» Center of projection at the origin
*Projection planez=d,d <0

Yy
A %7, 2
o

b0 ¥ Z,)
- X




Perspective Equations
Consider top and side views

LS

x, z)

(x,.d) vy, z)




Homogeneous Coordinate Form

1 0 0 O
consider g = Mp where 0 0 1 O
00 1/d 0

N < X
<




Perspective Division

* However w # 1, so we must divide by w to
return from homogeneous coordinates

* This perspective division yields

_ X _ oy _
Xp= —— Yp= —— z,=d
" 7/d " 7/d P

the desired perspective equations

«\We will consider the corresponding clipping
volume with the OpenGL functions



Normalization

 Rather than derive a different projection
matrix for each type of projection, we can
convert all projections to orthogonal
projections with the default view volume

* This strategy allows us to use standard
transformations in the pipeline and makes for
efficient clipping



Pipeline View

modelview
transformation

projection

———»

transformation

nonsingular

/|

| perspective

division

4D — 3D

against default cube

> | clipping —| projection [—

3D - 2D




Notes

\We stay In four-dimensional homogeneous
coordinates through both the modelview and
projection transformations

—Both these transformations are nonsingular
—Default to identity matrices (orthogonal view)

« Normalization lets us clip against simple cube
regardless of type of projection
» Delay final projection until end

—Important for hidden-surface removal to retain
depth information as long as possible



Orthogonal Normalization

glOrtho (left,right,bottom, top,near, far)

normalization = find transformation to convert
specified clipping volume to default

(right,top,-far)
“ ’ 1 l—.l )

"
(left, bottom,-near) (-1,-1,1)



Orthogonal Matrix

» Two steps
—Move center to origin

T(-(left+right)/2, -(bottom+top)/2,(near+far)/2))

—Scale to have sides of length 2

S(2/(left-right),2/(top-bottom),2/(near-far))

2
right — left
2
P=ST= top —bottom
0 0
0 0

0

2

_ right —left

right — left
_ top +bottom

top —bottom
far + near

near — far
0

far —near
1




Final Projection

e Setz =0

 Equivalent to the homogeneous coordinate
transformation

I\/Iorth -

o o o B+
o O — O
o O O O
b O O O

» Hence, general orthogonal projection in 4D is

P=M_ST



top view

General Shear

A

Back clipping plane
Object

i

T Front clipping plane

\

Projection plane
\ DOP

- X

(z ¥

N~

side view

Z




Shear Matrix

Xy shear (z values unchanged)

1 0 —cotf O]
Ho4¢)= |0 1 —cote O
0 0 1 0

0 0 0 1

Projection matrix
P= I\/Iorth H(@,(I))
General case: p=M,, STH(0,0)



Effect on Clipping

* The projection matrix P = STH transforms
the original clipping volume to the default
clipping volume

object top view 7= 1
PoF : — E DOP
x=-1
/ \ far plane \ Xx=1|
z=-1

clipping  near plane

volume distorted object

(projects correctly)



Simple Perspective

Consider a simple perspective with the COP (=center
of projection) at the origin, the near clipping plane at
z = -1, and a 90 degree field of view determined by
the planes

X=+4z,y =1z

A / z = -far

LN L




Perspective Matrices

Simple projection matrix in homogeneous
coordinates 1 0 0 O]
1 0 O
0 1 0
0 -1 0

M =

0
0
0

Note that this matrix Is independent of the far
clipping plane



Generalization

o O O
O O L O

2 O O
O ™ O O

after perspective division, the point (x, y, z, 1) goes to

x” =xlz
y =y
7" = -(at+pB/z)

which projects orthogonally to the desired point
regardless of o and 3



Picking oo and 3

If we pick
_ hear +far
(x —
far — near
_ 2near *far
near — far

the near plane is mappedtoz =-1
the far plane is mapped toz =1
and the sides are mappedtox=+x1,y=%1

Hence the new clipping volume is the default clipping volume



Normalization Transformation

distorted object
z=x projects correctly

N /- \ e

z = -far \
\< \ / — =] | x=1
z = -near
/ \)< ’
original b / |

clipping original object  new clipping T




Normalization and
Hidden-Surface Removal

» Although our selection of the form of the
perspective matrices may appear somewhat
arbitrary, 1t was chosen so that if z, > z, in the
original clipping volume then the for the

transformed points z;” > z,’

* Thus hidden surface removal works if we first apply
the normalization transformation

« However, the formula z>> = -(a+p/z) Implies that the
distances are distorted by the normalization which
can cause numerical problems especially if the near

distance i1s small



OpenGL Perspective

-glFrustum allows for an unsymmetric
viewing frustum (although gluPerspective

does not)
Z =2 .

/ min

Z, o)
max’ qux’ mdadXx

(x

min’ Ymin’ Zmax} L5
% e




OpenGL Perspective Matrix

* The normalization In glFrustum requires
an initial shear to form a right viewing
pyramid, followed by a scaling to get the
normalized perspective volume. Finally, the
perspective matrix results in needing only a
final orthogonal transformation

P = NSH

/

our previously defined

_ _ shear and scale
perspective matrix



Why do we do It this way?

» Normalization allows for a single pipeline
for both perspective and orthogonal viewing

*\We stay in four dimensional homogeneous
coordinates as long as possible to retain
three-dimensional information needed for
hidden-surface removal and shading

* We simplify clipping



